Explosives and Pyrotechnic Propellants for Use in Long-Term Deep Space Missions

CARL S. GORZYNSKI JR.* AND J. NORMAN MAYCOCK†

Martin Marietta Laboratories, Baltimore, Md.

Theme

FUTURE long-term deep space missions, such as the exploration of the outer planets, necessitate the spacecraft being exposed to deep space environments for periods of up to 10 yr. The explosive and propellant actuated devices on board used to perform mechanical functions must survive these exposures and exhibit a predictable performance. More specifically, the chemical components (i.e. the explosive and pyrotechnic propellant materials) in the devices must maintain their initial characteristics throughout the mission.

Under relatively high sterilization temperatures (e.g. two 64-hr cycles at 125°C) and on prolonged exposure to an outer space environment (e.g. 10 yr at 66°C under 10⁻⁶ torr) these chemical components could experience several physical changes.

To determine the survivability of materials to be used in long-term deep space missions, each item must be tested. Since heat sterilization is accomplished in a few days, laboratory tests duplicating the sterilization requirements may easily be performed.¹⁻⁶ However, since real-time aging and either performance testing of the devices or analytical (chemical) testing of the components to determine their survivability and reliability after several years' aging is not practicable, an accelerated aging technique must be used.

An accelerated aging procedure can only be meaningful when the critical degradation process occurring at the elevated test temperature is truly the same process which occurs at the actual storage temperature. The relationship between the rate of a degradation process and temperature may not be a single linear relationship but instead be two or even more linear relationships. It is, therefore, extremely important that the temperature chosen for the accelerated aging tests be within the temperature range applicable to the chemical reaction occurring in real-time aging.

Basically, the processes involved in aging can be described in terms of solid state kinetics, so it is possible to deduce a meaningful and correct aging from data on the parameters relating to the physicochemical properties of the materials such as thermal decomposition kinetics, sublimation kinetics, phase change characteristics, change of state phenomena, etc. These decomposition and sublimation kinetics, when available, can be used to predict material losses up to a 10-yr period under deep space environment exposures. When these kinetic data are not available, an analytical approach to determine these parameters can be used. Since explosive and propellant materials stored for years in a vacuum at some elevated temperature will experience degradation through sublimation and/or thermal decomposition, two parameters of major interest are the rates of these two processes.

By using data available in the literature and analytical expressions on explosive and pyrotechnic propellant materials, a

Table 1 Primary explosives surveyed

Common name	Acronym	Chemical formula	Melting point, °C	End application or principal use ^a
Lead styphnate		PbC ₆ H ₃ N ₃ O ₉	exp.	IN, S, D
Barium styphnate		BaC ₆ H ₃ N ₃ O ₉	•	IN, S, D
Lead				
4, 6 dinitroresorcinol(basic)	LDNR	Pb,C6H4N,O8	213	D
Lead mononitroresorcinol	LMNR	PbC ₆ H ₃ NO ₄		IN, S, D
1, 3, 5 tripicrylbenzene	TPB	C24HoNoO18	386	D
Potassium		24 9 9 10		
4, 6-dinitrobenzofuroxan	KDNBF	KC6H4N4O6	exp. 210	S
Diazodinitrophenol	DDNP	$C_6H_2N_4O_5$	157	S
Black powder		74% KNO.		IN, S, IG
•		10.4% S		
		15.6% C		
Lead azide		$Pb(N_3)_2$	exp.	IN, D
Copper azide		$Cu(N_3)_2$	exp. 202	IN, IG

^a IN = Initiator; IG = Igniter; S = Squib; D = Detonator.

selection of candidate materials most likely to survive sterilization and long-term deep space aging can be made. In this study the explosive components of the electroexplosive devices used in NASA, Army, Navy, and Air Force systems were identified, and categorized into primary explosives, secondary explosives, and propellant ingredients, and then, along with some available but as yet unused explosives, evaluated for qualification as candidates. The qualification of a material as a candidate for long-term deep space missions has been based upon its ability to survive the conditions stated earlier.

Table 2 Secondary explosives surveyed

Common name	Acronym	Chemical formula	Melting point °C	End application or principal use*
Azobis (2, 2', 4, 4', 6, 6' hexanitrobiphenyl)		C24H6N14O24	>485	NA
Ammonium picrate	Expl D	CAHANAO,	d. 265	
3, 3' bis (methylnitramino) -2, 2', 4, 4', 6, 6'-	•			
hexanitrobiphenyl	Bitetryl	$C_{14}H_8N_{10}O_{16}$	218	
1, 3 diamino -2, 4, 6, trinitrobenzene	DATB	CaHaNaOa	290	
3, 3' diamino -2, 2', 4, 4', 6, 6' hexanitrobiphenyl	DIPAM	C, H, N, O,	304	MDF
1, 3 bis (2, 4, 6 trinitrophenylamino) -2,	Dipicryl	C18H7N11O18	335	
4. 6-trinitrobenzene	DATB	-16711-14		
N. N dipicrylpyromellitimide	DIPPI	C,,H,N,O,	d. 370	
Dodecanitroquaterphenyl		C,4H,N,,O,4	>400	NA
2, 2', 4, 4', 6, 6' hexanitrodiphenylamine	Hexite	C12H5N7O12	243	
Cyclotetramethylenetetranitramine	HMX	C.H.N.O.	276	D
2, 2', 4, 4', 6, 6' hexanitroazobenzene	HNAB	C, H, N, O,	221	-
2, 2', 4, 4', 6, 6' hexanitrobiphenyl	HNB	C12H4N6O12	241	NA
2, 2', 4, 4', 6, 6' hexanitrodiphenylsulfone	HNDS	C ₁₂ H ₄ N ₆ O ₁₄ S	d. 345	
2. 2'. 4. 4'. 6. 6' hexanitrooxanilide	HNO	C, H, N, O,	d. 302	
2. 2'. 4. 4'. 6. 6' hexanitrostilbene	HNS	C14H6N6O12	316	MDF
Potassium hexanitrodiphenylamine	11145	C12H4N2O12K	3,0	NA
Nitrocellulose		C ₆ H ₆ O ₄ (ONO ₂)	d.	Propellant
Nitroglycerine		C ₃ H ₄ N ₃ O ₆	13.2	Propellant
Nitroguanidine	NG	CH ₄ N ₄ O ₃	13.4	Tropenant
2, 2', 2", 4, 4', 4", 6, 6' 6" nonanitroterphenyl	NO	C ₁₈ H ₂ N ₉ O ₁₈	440	
2, 2', 4, 4', 4", 6, 6' octanitro-m-terphenyl		C ₁₈ H ₆ N ₈ O ₁₆	>400	
2, 2', 4, 4', 6-pentanitrobenzophenone		C ₁₃ H ₅ N ₅ O ₁₅	320	NA
Pentaerithrytol tetranitrate	PETN	C ₁ H ₂ N ₄ O ₁	141	ITA
Cyclotrimethylenetrinitramine	RDX	C ₁ H ₆ N ₆ O ₆	204	MDF. D
Tetranitradibenzo- 1, 3a, 4, 6a	KDA	C3H6N6O6	204	MDF, D
tetraazapentalene	TACOT	C, HANO	378	MDF, D
1. 3. 5 triamino-2. 4. 6 trinitrobenzene	TATB	CaHaNaOa	378	MDF, D
2.4.6 trinitroaniline	TNA	CaHaNaOa	190	
Tetranitrocarbazole	TNC		296	
1. 4. 5. 8 tetranitronaphthalene	INC	C ₁₂ H ₅ N ₅ O ₆	>400	
2, 2', 4, 4' tetranitronaphthalene	TNO	C ₁₂ H ₄ N ₄ O ₈		
	INO	C ₁₄ H ₈ N ₆ O ₁₀	d. 313 352	NA
2, 4, 6 tripicryl-s-triazine		C21H6N12O18	332	NA
1, 3, 5-tris (methylnitramino)-2, 4, 6-	T	CHNO	***	
trinitrobenzene	Tristetryl	C ₉ H ₉ N ₉ O ₁₂	exp. 205	

^a MDF = Mild detonating fuse; D = Detonator; IG = Igniter; NA = Not available.

Received December 4, 1972; synoptic received October 11, 1973. Full paper available from National Technical Information Service, Springfield, Va., 22151, as N74-13664 at the standard price (available upon request). Supported by NASA Langley Research Center, Contract NAS1-10698.

Index categories: Spacecraft Sterilization; Materials, Properties of.

^{*} Senior Associate Research Scientist, Chemistry Department.

[†] Associate Director and Head of Chemistry Department. Associate Fellow AIAA.

Table 3 Pyrotechnic propellant ingredients surveyed

Common name	Chemical formula	Melting point °C	End application or principal use
Aluminum	Al	660	S, IG, GG
Ammonium dichromate	(NH ₄), Cr ₂ O ₇	d. 170	IN.IG
Ammonium perchlorate	NH ₄ ClO ₄	d. 300	IN, S, IG
Barium chromate	BaCrO ₄		IN, S, IG
Barium nitrate	Ba(NO ₁),	592	IN.S.IG
Barium peroxide	BaO,	450	IN, IG
Boron	В	2300	S.IG.GG
Carbon	С	3500	IN,S
Cupric oxide	CuO	1326	IN,S
Diatomaceous Earth	84%-92% SiO,	1600	S
Ferric oxide	Fe,O,	1565	IN
Lead chromate	PbCrO ₄	844	IG
Lead peroxide	PbO ₄	d. 290	IN
Lead thiocyanate	Pb(SCN) ₂	d. 190	S, IG
Magnesium	Mg.	651	IG
Molybdenum trioxide	MoO ₃	795	IG
Nickel	Ni	1455	IN,S
Potassium chlorate	KCIO ₃	356	S, IG
Potassium perchlorate	KCIO,	610	IN, S, IG, GO
Potassium nitrate	KNO ₃	338	S, IG, GG
Silicon dioxide	SiO,	1713	IN
Teflon	[C₂F₄] _n	d. 250	IG
Titanium	Ťi Ti	1725	IG
Tîtanium hydride	TiH,	d. 400	IN, GG
Tungsten	w î	3410	IG
Viton A		d. 200	IN, IG, GG
Viton B		d. 200	IN, IG, GG
Zirconium	Zr	1857	IN, S, IG

[&]quot; IN = Initiator; IG = Igniter; S = Squib; D = Detonator; GG = Gas generator.

Contents

Explosives and pyrotechnic propellant materials which will withstand heat sterilization cycling and 10-yr deep space aging, have been selected by means of a detailed literature survey, 110 reports, and an analytical evaluation of the physicochemical properties of the materials. The chemical components of the electroexplosive devices used in U.S. missiles and spacecraft were categorized into primary explosives, secondary explosives, and propellant ingredients (Tables 1–3). Kinetic data on parameters such as thermal decomposition and sublimation were obtained for these materials and used as a basis for the 10-yr life prediction.

Table 4 Oualified candidates

6	Pyrotechnic propellant ingredients			
Secondary explosives	Inorganic	Metal	Organic	
Diaminohexanitrobiphenyl (DIPAM)	Ammonium perchlorate	Aluminum	Teflon	
Cyclotetramethylenetetra-				
nitramine (HMX)	Barium chromate	Boron	Viton A	
Hexanitrostilbene (HNS)	Barium nitrate	Magnesium	Viton B	
Tetranitrodibenzotetraaza-		-		
pentalene (TACOT)	Barium peroxide	Titanium		
Nonanitroterphenyl	Carbon	Tungsten		
Octanitroterphenyl	Cupric oxide	Zirconium		
Triaminotrinitrobenzene (TATB)	Diatomaceous Earth	Zirconium/		
, ,		Nickel Alloy	,	
Diaminotrinitrobenzene (DATB)	Ferric oxide	•		
	Lead chromate			
	Lead peroxide			
	Molybdenum trioxide			
	Potassium chlorate			
	Potassium perchlorate			
	Potassium nitrate			
	Silicon dioxide			
	Titanium hydride			

Table 5 Conditionally qualified candidates^a

Primary explosives	Secondary explosives
Barium styphnate	Azobishexanitrobiphenyl
Lead dinitroresorcinol, basic (LDNR, basic)	Ammonium picrate (Explosive D)
Lead mononitroresorcinol (LMNR)	Bis(methylnitramino)hexanitrobiphenyl (Bitetryl)
Lead styphnate	Bis(trinitrophenylamino)trinitrobenzene (Dipicryl DATB)
1, 3, 5 tripicrylbenzene (TPB)	
Potassium 4, 6 dinitrobenzofuroxan (KDNBF)	Dipicrylpyromellitimide (DIPPI) Dodecanitroquaterphenyl
	Hexanitroazabenzene (HNAB)
	Hexanitrobiphenyl (HNB)
	Hexanitrodiphenylamine (Hexite)
	Hexanitrodiphenylsulfone (HNDS)
	Hexanitrooxanilide (HNO)
	Potassium hexanitrodiphenylamine
	Nitroguanidine (NG)
	Pentanitrobenzo phenone
	Tetranitronaphthalene
	Tetranitrocarbazole (TNC)
	Tetranitrooxanilide (TNO)
	Tripicryl-s-triazine
	Tris (methylnitramino) trinitrobenzene (Tristetryl)

[&]quot; Indeterminate without further data or testing.

Many explosive and pyrotechnic propellant materials are available which appear to be capable of surviving heat sterilization and 10-yr deep space flight times without deterioration. When data on the parameters relating to the physicochemical properties of these materials such as thermal decomposition kinetics, sublimation kinetics, change of state phenomena, etc. are available, the chemical and thermal stability of these materials under the specified environments have been determined. Unfortunately, data of this type are available for only a small number of explosive materials and therefore only a few secondary explosives and propellant ingredients can be definitely qualified as candidate materials (Table 4) capable of withstanding the specified environments. The limited amount of relevant data that are available on a larger number of primary and secondary explosives is sufficient to qualify these materials conditionally (Table 5). Further data and/or testing are required for definite qualification.

References

¹ Montgomery, L. C., "Sterilization of Solid Propellants," Rept. SPS 37-20, Vol. IV, April 30, 1963, Jet Propulsion Lab., Pasadena, Calif., pp. 58-60.

² Benedict, A. G., "Development of Sterilizable Pyrotechnic Devices," Rept. SPS 37-32, Vol. IV, April 30, 1965, Jet Propulsion Lab., Pasadena, Calif., pp. 112–114.

³ Bowman, N. J. and Knippenberg, E. F., "The Sterilization of Pyrotechnic Devices," Rept. 65SD992, December 23, 1965, General Electric Co., Philadelphia, Pa.

⁴ Bowman, N. J. and Knippenberg, E. F., "Pyrotechnic Devices for Use on Sterilized Spacecraft," *Journal of Spacecraft and Rockets*, Vol. 3, No. 10, Oct. 1966, pp. 1542–1544.

⁵ Lukens, S. C., "Sterilizable Liquid Propulsion System," *Journal of Spacecraft and Rockets*, Vol. 6, No. 6, June 1969, pp. 717–722.

⁶ Bement, L. J., "Sterilization-Environmental Testing of Initiators," *Proceedings of the Sixth Symposium on Electroexplosive Devices*, San Francisco, Calif., July 1969, pp. 3-3.1, 3-3.15.